If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5x^2+3x-92=0
a = 5; b = 3; c = -92;
Δ = b2-4ac
Δ = 32-4·5·(-92)
Δ = 1849
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1849}=43$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(3)-43}{2*5}=\frac{-46}{10} =-4+3/5 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(3)+43}{2*5}=\frac{40}{10} =4 $
| b+4=96 | | 3(4-c)=-9c | | 0,9=0.4m | | 3x+8=190 | | 75-4y=4y+11 | | 180-4x=110 | | 63=9b+56 | | 40=b/7+32 | | 72=4(y-71) | | 20x-6=15x+19 | | 1.8-3.7x=-4.2x+0 | | 6x+3-3x=-15 | | 2x−7=−19x= | | -10k=-16-6k | | 9*3^x+3^(-x)=10 | | (x+8)x4=21x2 | | x^2+40x-100=0 | | 3+3=-12-2x | | (x+8)^4=21^2 | | k+35=65 | | X=5/8t | | 12x/5=15 | | -2r-13=4r+7r | | 3(1-9)+22a=2(2a-9)-15 | | 5=22/(1+r) | | 3(1-9)=2(2a-9)-15 | | -5j+-3=87+5j | | -3a+12-6a=-9 | | 3=l2-1l+2 | | k+47/9=9 | | -16=-6+x | | –3(–2q+3)= |